Calcium-activated potassium channels and NO regulate human peripheral conduit artery mechanics.
نویسندگان
چکیده
The role of NO in the regulation of the mechanical properties of conduit arteries is controversial in humans, and the involvement of an endothelium-derived hyperpolarizing factor (EDHF), acting through calcium-activated potassium (KCa) channels, has never been investigated at this level in vivo. We assessed in healthy volunteers, after oral administration of aspirin (500 mg), the effect of local infusion of NG-monomethyl-L-arginine (L-NMMA; 8 mumol/min for 8 minutes), an NO synthase inhibitor, tetraethylammonium chloride (TEA; 9 mumol/min for 8 minutes), a KCa channels inhibitor, and the combination of both on radial artery internal diameter, wall thickness (echo tracking), blood flow (Doppler), and pressure. The incremental elastic modulus and compliance were fitted as functions of midwall stress. L-NMMA decreased modulus and increased compliance at high levels of midwall stress (all P<0.05) without affecting radial diameter. TEA reduced radial diameter from 2.68+/-0.07 to 2.50+/-0.08 10(-3) m, increased the modulus, and decreased the compliance at all levels of stress (all P<0.05). Combination of both inhibitors synergistically enhanced the increase in modulus, the decrease in diameter (from 2.71+/-0.10 to 2.42+/-0.09 10(-3) m), and compliance compared with TEA alone (all P<0.05). These results confirm that inhibition of NO synthesis is associated with a paradoxical isometric smooth muscle relaxation of the radial artery. They demonstrate the involvement of KCa channels in the regulation of the mechanical properties of peripheral conduit arteries, supporting a role for EDHF at this level in vivo. Moreover, the synergistic effect of l-NMMA and TEA shows that KCa channels compensate for the loss of NO synthesis to maintain peripheral conduit artery diameter and mechanics.
منابع مشابه
Crucial role of NO and endothelium-derived hyperpolarizing factor in human sustained conduit artery flow-mediated dilatation.
Whether NO is involved or not in sustained conduit artery flow-mediated dilatation in humans remains unclear. Moreover, the role of endothelium-derived hyperpolarizing factor (EDHF), synthesized by cytochrome epoxygenases and acting through calcium-activated potassium channels, and its relationship with NO during flow-mediated dilatation have never been investigated previously. In 12 healthy su...
متن کاملCALL FOR PAPERS Regulation of Cardiovascular Functions by Eicosanoids and Other Lipid Mediators Evidence for a basal release of a cytochrome-related endothelium-derived hyperpolarizing factor in the radial artery in humans
Bellien, Jeremy, Robinson Joannides, Michele Iacob, Philippe Arnaud, and Christian Thuillez. Evidence for a basal release of a cytochromerelated endothelium-derived hyperpolarizing factor in the radial artery in humans. Am J Physiol Heart Circ Physiol 290: H1347–H1352, 2006. First published December 9, 2005; doi:10.1152/ajpheart.01079.2005.—Whether a cytochrome P-450 (CYP)-related endothelium-d...
متن کاملLarge-conductance calcium-activated potassium channel activity is absent in human and mouse neutrophils and is not required for innate immunity.
Large-conductance Ca(2+)-activated K(+) (BK) channels are reported to be essential for NADPH oxidase-dependent microbial killing and innate immunity in leukocytes. Using human peripheral blood and mouse bone marrow neutrophils, pharmacological targeting, and BK channel gene-deficient (BK(-/-)) mice, we stimulated NADPH oxidase activity with 12-O-tetradecanoylphorbol-13-acetate (PMA) and perform...
متن کاملP13: Potassium Channels and Long-Term Potentiation Formation
Long-term potentiation (LTP) is a form of activity-dependent plasticity that occurs during learning. Potassium channels are the most diverse group of all ion channels that related to synaptic plasticity. Small-conductance calcium-activated potassium channels (SKs) are found in hippocampal CA1 neurons and by inhibiting of postsynaptic potentials are involved in synaptic transmission impairment. ...
متن کاملMechanism of Dopamine-mediated Activation of Bk Channels in Human Coronary Artery Smooth Muscle Cells
Coronary artery disease (CAD) is an important cause of morbidity and mortality worldwide and is associated with a sustained increase in vascular tone. Large conductance, voltage-dependent and calcium-activated potassium (K) channels, or BK channels determine membrane electrical activity in human coronary artery smooth muscle cells (HCASMCs). Their activation leads to hyperpolarization, a decrea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Hypertension
دوره 46 1 شماره
صفحات -
تاریخ انتشار 2005